
Forwarding Programming in Protocol-Oblivious
Instruction Set

Jingzhou Yu*, Xiaozhong Wang*, Jian Song*, Yuanming Zheng*, Haoyu Song#
Huawei Technologies CO., LTD

*Beijing, China #Silicon Valley, USA
yujingzhou@huawei.com

Abstract—Protocol-Oblivious Forwarding (POF) is an
enhancement to OpenFlow-based SDN forwarding architecture.
In this paper, we proposed a basic POF Flow Instruction Set
(POF-FIS) which can be used to edit and forward packets as
designed on the controller side. Working on the southbound
interface of SDN, POF-FIS is independent of target platforms
and northbound interfaces. To design the forwarding process on
the controller side, users can take advantages of high-level
programming languages or directly manipulate the POF-FIS
using graphical or command-line user interface. High-speed
execution of POF-FIS is very important for network elements,
while eliminating the need of hard-coded protocol parsing and
packet processing. We show that POF-FIS allows the forwarding
capability of the flexible network elements to be fully released to
achieve higher performance and more expressive forwarding
behavior.

Keywords—SDN, OpenFlow, POF, FIS

I. INTRODUCTION
Software-Defined Networking (SDN)[1] decouples the

controller plane and the data plane. It brings possibility to
move most network service specifications from network
elements to controller, which can be deployed on separate
servers. SDN enables a much more flexible network.
OpenFlow[2], which prescribes a way to handle network
elements from a controller and describes the communication
protocol between controller and network elements, is a popular
SDN southbound interface standard.

Numerous networking protocols exist today and many
more emerge in the future. However, current network elements
can only support a small number of protocols even with
OpenFlow. Operators cannot implement services that use
unsupported protocols on these network elements. The rapid
development of information industry needs the network
elements to be more flexible and extendable. Protocol-
Oblivious Forwarding (POF)[3][4][5] is an enhancement to the
current OpenFlow-based SDN forwarding architecture with the
objective to improve the SDN programmability. POF enables
SDN data plane to support new protocols and forwarding
services without modifying any code on network elements.
Bosshart et al. recently proposed a high-level language named
P4[6]. P4 mainly focuses on programming protocol-
independent packet processors.

The southbound interface between the SDN controller and
network elements needs a unified flow instruction set. Any
protocols, policies and services for today and tomorrow should
be able to be realized using the combination of these flow
instructions assembled by the SDN controller.

In this paper, we propose a basic flow instruction set, POF-
FIS, which allows parsing, editing, and forwarding packets
arbitrarily. POF-FIS can be used for the southbound interface
communication between SDN controller and network elements.

II. POF FLOW INSTRUCTION SET
Using POF to support new protocols, the operators only

need to download some flow rules with associated instructions
into the network elements. We call this instruction set POF-FIS.
POF-FIS is an enhancement and extension of the instructions
and actions defined in OpenFlow 1.x.

POF-FI Block 1

�Flow Instruction

�Flow Instruction

�Flow Instruction

...

POF-FI Block 2
�� Flow Instruction

�� Flow Instruction

�� Flow Instruction

...

POF-FI Block N
�� Flow Instruction

�� Flow Instruction

�� Flow Instruction

...

POF Network Element

POF Controller

POF
Southbond
Interface

GUI

Flow
Forwarding

High-level language
CompilerCLI

POF-based Flow Instruction Set

Users Applications

Fig. 1. The position of POF-based Flow Instruction Set in POF framework.

Fig. 1 shows the position of POF-FIS in the overall POF
framework. In the POF network element, network flows are
handled by flow instructions in the form of POF Flow

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.92

577

Instruction Blocks (POF-FIB). POF-FIBs are deployed by a
controller through the POF southbound interface. All the flow
instructions in POF-FIBs are defined in POF-FIS. The POF
controller can use a Command-Line Interface (CLI), a
Graphical User Interface (GUI), or a high-level programming
language compiler as the northbound interfaces to users and
applications. In order to design the whole forwarding
application, users can organize the POF-FIS to POF-FIBs using
the northbound interfaces, and then download the POF-FIBs to
the network elements.

The followings are the main categories of POF-FIS based
on functionality:

TABLE I. CATEGORIES OF POF-FIS.

Category Instructions

EDITING

SET_FIELD, ADD_FIELD, DEL_FIELD, ALG,
CALCULATE_CHECKSUM,
SET_FIELD_UPDATE_CHECKSUM, INC_FIELD,
DEC_FIELD, OR_FIELD, SRL_FIELD,
SLL_FIELD, AND_FIELD, XOR_FIELD,
NOR_FIELD, NOT_FIELD

FORWARDING
GOTO_TABLE, COUNTER, OUTPUT, GROUP,
MOVE_PACKET_OFFSET,
SET_PACKET_OFFSET

ENTRY SET_TABLE_ENTRY, ADD_TABLE_ENTRY,
DEL_TABLE_ENTRY

JUMP BRANCH, COMPARE, JUMP

FLOW SET_FLOW_METADATA,
GET_FLOW_METADATA, ORDER_ENFORCE

A. Editing
This kind of instructions are used to edit the packet data.

Packet data editing is the most important part during the
forwarding process. Almost all of the protocol rules need to
edit the packet data by writing, storing, copying, calculating
and so on.

 SET_FIELD sets any field in packet data to any value, e.g.
destination MAC address in Ethernet header. ADD_FIELD and
DEL_FIELD can insert or delete a custom field into or from
the packet data, e.g. tunnel label. These are three of the most
useful instructions.

Using these three instructions, users can define a totally
custom field for Operation Administration and Maintenance
(OAM). Fig. 2 shows the topology of users’ own local area
network with the custom OAM field. When a normal IPv4
packet comes into users’ own network, the OAM field can be
inserted into the packet data by ADD_FIELD instruction at the
ingress gateway. Inside the local area network, users can write
the OAM field with any value. The OAM field can be deleted
at the egress gateway if the packet is going to be send out of
the users’ own local area network to be a normal IPv4 packet.
The use of the OAM field is quite wide, including firewall,
label switching, priority match, statistics and so on. It’s
depends on the users. Using editing species POF-FIS, users are
also able to freely decide where the OAM field locates, how
long the OAM field takes.

The remaining editing species instructions, such as ALG,
INC_FIELD, DEC_FIELD, CALCULATE_CHECKSUM and
some other logical operations, all are kinds of calculating of the

MAC EthType
(0800) OAM IPv4

MAC EthType
(0800) IPv4

MAC EthType
(0800) IPv4

ADD_FIELD (OAM)

SET_FIELD (OAM)
DEL_FIELD (OAM)

SET_FIELD (OAM)

MAC EthType
(0800) OAM IPv4

Fig. 2. Usage of POF-FIS in users’ LAN with the custom OAM field.

packet data. ALG can do some arithmetic like Hash. Time-To-
Live (TTL) field in the IPv4 header can be decreased by 1
using DEC_FIELD instruction during the IPv4 forwarding. All
of the bit-level operations can be handled by the logical
instructions.

B. Forwarding
This kind of instructions are used for packet forwarding.

The whole forwarding for one packet in the network element
might contain multiple processes. Users can separate them into
some different flow tables according to the functionality, e.g.
Layer-3 Parse Table and Layer-3 Encap Table. When the
processing in a flow table is complete, users can execute
GOTO_TABLE instruction to send the packet data from the
previous flow table to the next flow table. This instruction is
very similar to the OFPIT_GOTO_TABLE instruction in
OpenFlow[2]. There is more match field information about the
next flow table in GOTO_TABLE. COUNTER instruction can
count the number of packets which have already been handled,
also can count the total length in byte unit. OUTPUT
instruction sends the packet data out of the network elements
through the specified network port. At the meantime, users can
decide where the packet to be send starts from, and whether
sends the metadata before the packet data or not. GROUP
instruction is used for multicast.

MOVE_PACKET_OFFSET and SET_PACKET_OFFSET
can move the packets’ base pointers forward or backward or to
a specified location. These two instructions are very useful to
handle the packets on different layers. For example, using
SET_PACKET_OFFSET instruction, users can set the packet
offset to 112-bit, which is the start position of IPv4 header
(layer 3) in a normal Ethernet packet. No matter which layer
the protocol or the business located, even though layer 7, users
are always able to handle the packet data on this layer using
these two packet offset related instructions. As long as users

578

know the offset of this layer, the packet base pointer can be
moved easily to the position of the packet data on this layer.

C. Entry
This kind of instructions let the network elements operate

the flow entry by itself. SET_TABLE_ENTRY instruction sets
the parameter and the match information of flow entries.
ADD_TABLE_ENTRY and DEL_TABLE_ENTRY can insert
a new flow entry into a flow table, or delete a existent flow
entry from a flow table.

Operation of the flow entry by network element is very
useful for the protocol rules which need to study the
information about the network, e.g. topology, routing and
neighbors. For instance, MAC learning is one of the most
common function in the network switches. Maintain one flow
table for mapping of MAC address and network port number,
and check the source MAC address field of the packet data,
which is received by one input network port. If this source
MAC address doesn’t exist in the mapping table, users can
implement the ADD_TABLE_ETNRY to insert the mapping
information about the source MAC address and the input port
number. Route learning also can be realized in the same way.

D. Others
JUMP and FLOW these two species are advanced

instructions. The JUMP instructions are able to alter the packet
data processing procedure. The FLOW instructions provide
some operations about the global status of the data flow.

III. CHARACTERISTICS OF POF-FIS

A. Flexibility
Profited from the POF technology, POF-FIS is oblivious of

any protocol. POF denotes any protocol field with the
following structure:

field {
 offset;
 length;
};

The “offset” is the field’s start position relative to the
current protocol header. The “length” is the field’s length in bit
unit. The following example Fig. 3 shows the Ethernet protocol
header format.

DST_MAC SRC_MAC TYPE

0 48 96 112

Ethernet

Fig. 3. Ethernet protocol header.

There are three fields: DST_MAC, SRC_MAC, and TYPE.
They are denoted as follows:

� DST_MAC: {0,48}; /*offset is 0bit, length is 48bit.*/

� SRC_MAC:{48,48};/*offset is 48bit, length is 48bit.*/

� TYPE: {96, 16}; /* offset is 96bit, length is 16bit. */

It is easy to see that any existing or new protocols can be
denoted in the similar way. To support new services, users can
assemble the POF-FIS freely to design the flow forwarding
process. It brings full programmability to the network elements.

B. Independence
1) Independent of Northbound Interface
The southbound interface of a SDN controller is used for

the communication between the controller and network
elements. The northbound interface indicates the interaction
between controller and users or applications. POF-FIS acts on
controller, southbound interface, and network elements;
therefore it is independent of the northbound interface. The
controller can provide various types of northbound interface to
users or applications. No matter what kind of northbound
interface is used, the controller needs to translate the whole
forwarding process into POF-FIBs, and then download them to
the network elements.

Northbound interface independence allows much more
flexibility and diversity of choice. POF-FIS does not stipulate
any specific way on how to design service or packet
forwarding process on controller. Users can freely choose one
way to use according to their preference and demand. For
example, users can directly manipulate POF-FIS through the
graphical user interface or command-line interface of the
controller, or they can take advantage of some high-level
programming languages to define the forwarding process. This
will be described in details in the next section.

2) Independent of Service and Application
POF-FIS is a generic instruction set which describes the

basic packet processing primitives. It is not designed for any
specific services or applications. Various services can be
implemented through different combinations of the same set of
instruction. Every instruction of POF-FIS can be used in the
design of any services and the realization of any applications.

C. Completeness
1) Support All the Protocols
POF technology is protocol independent. Each field in the

packet format can be described by offset and length. POF-FIS
also uses this method to identify and manipulate any field in
any packet format. In other words, any field in any packet
protocol, whether existing or new, can be an object
manipulated by POF-FIS.

We provides two examples to show this point. The Ethernet
protocol uses the Ether Type field to identify the layer 3
protocol. The IPv4 protocol makes the forwarding decision
based on the destination IP address. These protocols define the
way to handle the packets including parsing, editing and
forwarding, which are all covered by POF-FIS. There are five
types of instructions in POF-FIS: EDIT, FORWARDING,
JUMP, ENTRY, FLOW, which mean to cover all the possible
operations on packets. For instance, EDIT includes all packet
editing related instructions we believe ever needed, and
FORWARDING and JUMP cover all the common packet
processing related instructions.

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

579

IPv4

Source IP Address

Version IHL TOS Total Length

Identification Flags Fragment Offset

Time To Live
offset=64,length=8 Protocol Checksum

offset = 80, length = 16

Destination IP Address
offset = 128, length = 32

0 4 8 16 19 31

Data @ {96b, 16b}
== 0x0800 ?

Use Data @ {128b, 32b}
as key to search LPM table to get

the next hop information

DEC_FIELD
(Data @ {64b, 8b}, 1)

CALCULATE_CHECKSUM
(Data @ {0b, 160b},
Write to {80b, 16b})

SET_FIELD
(Date @ {0b, 48b},

NHP_MAC)

SET_FIELD
(Date @ {48b, 48b},

Local_MAC)

OUTPUT
(NHP_Interface)

YES

MOVE_PACKET_OFFSET
(FORWARD, 112b)

MOVE_PACKET_OFFSET
(BACKWARD, 112b)

Fig. 4. How to handle the Ethernet and IPv4.

Fig. 4 shows the steps to handle the Ethernet and IPv4.

� Check the packet data with 96-bit offset and 16-bit
length (i.e. EtherType field). If it equals to 0x0800, go
to the next step.

� Execute the MOVE_PACKET_OFFSET instruction to
move the packet base pointer forward with 112-bit to
the IPv4 header.

� Use the packet data with 128-bit offset and 32-bit
length (DIP field) as a match key to search the LPM
table in order to get the next hop information.

� Execute the DEC_FIELD instruction to decrease the
value of the packet data with 64-bit offset and 8bit
length (TTL field) by 1.

� Execute the CALCULATE_CHECKSUM instruction
to calculate the checksum of the packet data with 0-bit
offset and 160-bit length (IP header), and write the

checksum result to the packet data with 80-bit offset
and 16-bit length (Checksum field).

� Execute the MOVE_PACKET_OFFSET instruction to
move the packet base pointer backward with 112-bit to
the Ethernet header.

� Execute the SET_FIELD instruction to set the value of
packet data with 0-bit offset and 48-bit length (DMAC
field) to the MAC address of the next hop.

� Execute the SET_FIELD instruction again to set the
value of packet data with 48-bit offset and 48-bit
length (SMAC field) to the local MAC address.

� Execute the OUTPUT instruction to send the packet
out through the interface connected to the next hop.
The simple IPv4 forwarding procedure is finished.

Four flow instructions are used for the IPv4 packet
forwarding. The operands and the parameters of these
instructions are described by a universal format with offset and
length of the field in the packet, instead of using hard coded
fields for predefined protocol formats.

Since POF-FIS is designed to cover all the possible
operations on packets and the object to be handled can be any
field in any part of a packet, it is capable of realizing any
packet protocols even those nonexistent today.

2) Designable Instruction Set without Using other Tools
Users can take advantage of high-level programming

language to program the services. The program can be
translated or compiled into POF-FIBs by some tools, to
complete the design of the whole forwarding process. This is
certainly convenient but not the only way. If one has sufficient
understanding about the networks and is quite familiar with
POF principle, he or she is able to design the whole forwarding
process by directly assembling the POF flow instructions on
the controller without any compiler or interpreter.

The compilers or interpreter may not be intelligent enough
to achieve the optimal POF instructions which are efficient and
support best network element performance. If this is the case,
users are better to directly manipulate the POF flow
instructions without using other tools to achieve better device
adaptation and greater code efficiency.

IV. REALIZATION

A. Direct Manipulation of POF-FIS
Above the POF interface, any network forwarding

application needs to be converted to the POF flow instructions
first. One way to do it is to directly use Graphical User
Interface (GUI) or Command-Line Interface (CLI) for
interactive data plane programming. This is like programming
in assembly language. Although needing to handle flow level
details, this method is fast and direct. The GUI/CLI can be
used to handle fast updates and can also be used to directly
download compiled applications to network elements.
Reference [4] have already implemented an open source GUI
and CLI to support this programming method.

580

1) Graphical User Interface

Fig. 5. GUI of POF Controller.

Fig. 5 shows the GUI of POF controller. There are four
parts in the GUI.

� Create user-defined protocol types. Any packet format
can be defined here using offset and length of each
field.

� Create multiple flow tables for the forwarding process.
These flow tables can be designed to operate in parallel
or pipeline.

� Create flow forwarding entries for each flow table.
Every flow entry includes match and instruction block.

� Add POF flow instructions to each flow entry.

All the actions on the GUI can be selected and
parameterized. Users just need to click the mouse buttons with
a few keyboard inputs to define the whole forwarding process.

2) Command-Line Interface

Fig. 6. CLI of POF Controller.

Fig. 6 shows the CLI of the POF controller. There are four
commands illustrated in the screenshot. ADD PROTOCOL,

ADD TABLE, and ADD ENTRY are used for the design of
forwarding process. Users can check the detail information of
tables and entries using DISPLAY TABLE command.

B. High-Level Language Description

Another method to convert the services or applications to
POF flow instructions is to compile or interpret programs in
some high-level languages. The high-level language provides
another layer of abstraction that supports modularity and
composition[7]. With the help of a high-level language, the
developers can focus on what the application really wants to
achieve rather than dealing with particular network element
architecture and conducting tedious and error-prone flow-level
match-action manipulations. Quite a few such languages have
been proposed[6][7][8]. The following examples briefly show
the source code using P4, C, and Java.

1) P4[6]
P4 is a new high-level language for programming protocol-

independent packet processors. The following is an example to
design the forwarding process using P4.

header mTag {
 fields {
 up1 : 8;
 up2 : 8;
 down1 : 8;
 down2 : 8;
 ethertype : 16;
 }
}

action add_mTag(up1, up2, down1, down2, egr_spec) {
 add_header(mTag);
 // Copy VLAN ethertype to mTag
 copy_field(mTag.ethertype, vlan.ethertype);
 // Set VLAN's ethertype to signal mTag
 set_field(vlan.ethertype, 0xaaaa);
 set_field(mTag.up1, up1);
 set_field(mTag.up2, up2);
 set_field(mTag.down1, down1);
 set_field(mTag.down2, down2);

 // Set the destination egress port as well
 set_field(metadata.egress_spec, egr_spec);
}

2) C
C is one of the widely used programming languages of all

time[10]. The following is an example to design the forwarding
process using C.

struct Metadata_L3 {
 uint8 L3Stake; // L3 Offset
 uint16 VpnID; // VPN ID
 uint16 RealLength; // Packet Length
 uint16 SqID; // QOS Queue ID
};

581

struct Table_Portinfo {
 uint16 VpnID; // VPN ID
 uint16 SqID; // QOS Queue ID
};

struct IPV4_HEADER_S {
 uint4 Version;
 uint4 HeaderLength;
 union {
 uint8 TOS;
 uint6 DSCP;
 uint3 Precedence;
 };

 uint16 TotalLength;
 uint16 FragReAssemID;
 IPV4_FRAG_HWORD_S FragHWord;
 IPV4_TTL_PROT_HWORD_S TtlProtWord;
 uint16 Checksum;
 uint32 SIP;
 uint32 DIP;
};

(Metadata_L3 *) p_metadata;

(Table_Portinfo *) p_table;
p_metatada->VpnID = p_table->VpnID;
p_ipheader = p_packet + 14;
Goto_Table(TableID, p_metadata->VpnID, p_ipheader->DIP);

3) Java
The java programming language is a general-purpose,

concurrent, class-based, object-oriented language[11]. The
following is an example to design the forwarding process using
Java.

class Metadata_L3 {
 short CurPos; // Current Position
 short VpnID; // VPN ID
 short RealLength; // Packet Length
 short SqID; // QOS Queue ID
};

class Table_Portinfo {
 short VpnID; // VPN ID
 short SqID; // QOS Queue ID
};
class IPv4Header {
 byte version;
 byte headerLength;
 byte diffServ;
 short totalLength;
 short id;
 byte flags;
 short fragmentOffset;
 byte ttl;
 byte protocol;
 short checksum;
 int srcIPAddress;
 int desIPAddress;
};

public void process () {
 metadataL3.VpnID = portInfo.VpnID;
 metadataL3.CurPos += 14;
 keyList.add (metadataL3.VpnID);
 keyList.add (ipv4Header.desIPAddress);
 OFAction.gotoTable (TableID, keyList);
}

Each of these three high-level languages could be the users’
choice according to the users’ requirement and the availability
of compiling tools.

V. CONCLUSIONS
POF-FIS is flexible to implement protocol rules and deploy

services rapidly, whether existing or new. As the major
southbound interface component in SDN, POF-FIS is
independent of target platform, northbound interface, and the
high-level programming language. Users can choose to use P4,
C, Java, and any other high-level languages to design the
forwarding process. Alternatively, users can also directly
manipulate the POF-FIS to assemble the whole forwarding
process.

We believe POF-FIS can become an important part of the
OpenFlow 2.0 standard. The generic POF-FIS significantly
improves the flexibility of network elements. POF-FIS allows
the forwarding capability of the flexible network elements to
be fully released to achieve higher performance and more
expressive forwarding behavior.

REFERENCES
[1] ONF. (2012, April 13). Software-Defined Networking: The New Norm

for Networks [Online]. Available: https://www.opennetworking.org
[2] ONF. (2013, Oct. 15). OpenFlow Switch Specification (1.4.0) [Online].

Available: https://www.opennetworking.org
[3] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN

through a future-proof forwarding plane,” in SIGCOMM HotSDN
Workshop, Aug. 2013.

[4] (2013). Protocol Oblivious Forwarding [Online]. Available:
http://www.poforwarding.org

[5] H. Song, J. Gong, H. Chen, J. Dustzadeh, “Unified POF programming
for diversified SDN data plane,” in Unpublished, 2014.

[6] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker, “Programming Protocol
Independent Packet Processors,” in Unpublished, 2013.

[7] N. Foster, M. Freedman, A. Guha, R. Harrison, N. P. Katta, C.
Monsanto, J. Reich, M. Reitblatt, J. Rexford, C. Schlesinger, A. Story,
and D. Walker, “Languages for Software Defined Networks, ” IEEE
Communication Magazine, vol. 51, pp. 128-134. February 2013.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. Walker, “Frenetic: A Network Programming Language,”
in ACM SIGPLAN ICFP, 2011.

[9] A. Voellmy and P. Hudak, “Nettle: Functional Reactive Programming of
OpenFlow Networks,” in PADL, 2011.

[10] (2014, July). TIOBE programming community index [Online]. Available:
http://www.tiobe.com

[11] J. Gosling, B. Joy, G. Steele, G. Brancha and A. Buckley. (2014, March).
The Java language Specification (Java SE 8 Edition) [Online]. Available:
http://www.oracle.com

582

